

CONCOURS D'ADMISSION 2020

FILIERE UNIVERSITAIRE INTERNATIONALE FORMATION FRANCOPHONE FUI-FF_ Session 2_Printemps

Épreuve n°1

MATHEMATIQUES

Samedi 14 Mars 2020 de 08h30 à 11h30

Durée: 3 heures

L'objet de ce problème est d'établir certaines inégalités pour la trace d'un produit de matrices, découvertes par John Von Neumann en 1937.

On notera A^{\top} la transposée d'une matrice A, et $\operatorname{tr}(A)$ sa trace. On rappelle qu'une matrice P est orthogonale si $P^{\top}P = I$, où I désigne la matrice identité. On note $O_n(\mathbb{R})$ le groupe des matrices orthogonales, S_n l'espace vectoriel des matrices symétriques réelles (i.e. telles que $M^{\top} = M$) et A_n celui des matrices antisymétriques (i.e. telles que $M^{\top} = -M$).

Les questions de la première partie, numérotées de 1 à 7, sont largement indépendantes les unes des autres. Les parties 2 et 3 reposent partiellement sur les résultats établis à la partie 1.

Partie 1: Questions préliminaires

1. L'objet de cette question est de montrer l'inégalité suivante dite de réarrangement : étant données deux suites croissantes finies de réels $a_1 \le a_2 \le \cdots \le a_n$ et $b_1 \le b_2 \le \cdots \le b_n$, alors pour toute bijection σ de $\{1, \ldots, n\}$ dans lui même, on a

$$a_1b_{\sigma(1)} + a_2b_{\sigma(2)} + \dots + a_nb_{\sigma(n)} \le a_1b_1 + \dots + a_nb_n.$$

- (a) Montrer l'inégalité pour n=2.
- (b) En déduire le cas général par récurrence sur n. (indication : on cherchera à se ramener au cas où $\sigma(n) = n$)
- 2. On rappelle que l'exponentielle d'une matrice $M \in M_n(\mathbb{R})$ est définie par

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

On rappelle que si MN = NM alors $\exp(M + N) = \exp(M) \exp(N)$.

(a) Montrer que pour toute matrice $M \in M_n(\mathbb{R})$ on a

$$\left. \frac{d}{dt} \right|_{t=0} \exp(tA) = A.$$

- (b) Montrer que si M est une matrice antisymétrique, alors $\exp(M)$ est orthogonale.
- 3. Dans cette question on montre le théorème suivant : si A et B sont des matrices symétriques telles que AB = BA alors il existe une matrice orthogonale P et des matrices diagonales D_A et D_B telles que $A = P^{\dagger}D_AP$ et $B = P^{\dagger}D_BP$.
 - (a) Si λ est une valeur propre de A, montrer que $\ker(A \lambda I)$ est stable par B.
 - (b) Démontrer le théorème.
- **4.** Montrer que $M_n(\mathbb{R}) = A_n \oplus S_n$
- **5.** Pour $(A, B) \in M_n(\mathbb{R})^2$ on pose $\langle A, B \rangle = \operatorname{tr}(A^{\top}B)$
 - (a) Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur $M_n(\mathbb{R})$.
 - (b) Montrer que relativement à ce produit scalaire on a $S_n = (A_n)^{\perp}$.

6. Soit D une matrice diagonale de taille n, dont les coefficients diagonaux sont notés d_1, \ldots, d_n . Montrer que la matrice $M \in M_{2n}(\mathbb{R})$ dont l'écriture par blocs est

$$M = \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix}$$

est diagonalisable, et préciser ses valeurs propres (on pourra commencer par traiter le cas n=1).

7. Montrer que $O_n(\mathbb{R})$ est un sous-ensemble fermé et borné de $M_n(\mathbb{R})$.

Partie 2 : Inégalité de Von Neumann pour les matrices symétriques

Soient A et B des matrices symétriques dans $M_n(\mathbb{R})$. On note $a_1 \leq a_2 \leq \cdots \leq a_n$ (resp. $b_1 \leq b_2 \leq \cdots \leq b_n$) les valeurs propres de A (resp. B) rangées dans l'ordre croissant et répétées autant de fois que leur multiplicité. L'objectif de cette partie est de montrer l'inégalité suivante :

$$\operatorname{tr}(AB) \leqslant a_1b_1 + \dots + a_nb_n.$$

- 8. Soit \mathcal{C} l'ensemble des matrices symétriques réelles dont les valeurs propres (répétées autant de fois que leur multiplicité) sont $b_1 \leqslant \cdots \leqslant b_n$. Montrer que $C \in \mathcal{C}$ si et seulement s'il existe $P \in O_n(\mathbb{R})$ telle que $C = P^\top BP$.
- **9.** Montrer qu'il existe $C_0 \in \mathcal{C}$ telle que

$$\operatorname{tr}(AC_0) = \max \left\{ \operatorname{tr}(AC), \ C \in \mathcal{C} \right\}.$$

10. Pour $M, C \in M_n(\mathbb{R})$ quelconques et $t \in \mathbb{R}$ on pose

$$\varphi_M(t) = \operatorname{tr} (A \exp(tM)C \exp(-tM)).$$

Calculer $\varphi'_M(0)$.

- 11. Montrer que si $C = C_0$ et M est antisymétrique alors $\varphi'_M(0) = 0$.
- 12. En déduire que $AC_0 = C_0A$.
- 13. Conclure que $\operatorname{tr}(AB) \leq \sum_{i=1}^{n} a_i b_i$ et caractériser le cas d'égalité.
- 14. Montrer que l'on a également

$$\operatorname{tr}(AB) \geqslant \sum_{i=1}^{n} a_i b_{n-i}.$$

Partie 3: Valeurs singulières et inégalité de Von Neumann dans le cas général

15. Soit $A \in M_n(\mathbb{R})$ une matrice inversible.

- (a) Montrer que la matrice $A^{\top}A$ est symétrique et que ses valeurs propres sont strictement positives. En déduire qu'il existe une matrice symétrique S, dont les valeurs propres sont strictement positives, telle que $A^{\top}A = S^2$.
- (b) Montrer qu'il existe une matrice $O \in O_n(\mathbb{R})$ telle que A = OS.
- (c) Montrer qu'il existe des matrices orthogonales U et V et une matrice diagonale D à coefficients strictement positifs telle que A = UDV.
- **16.** Montrer que si $A \in M_n(\mathbb{R})$ est quelconque, il existe des matrices orthogonales U et V et une matrice diagonale D à coefficients positifs telle que A = UDV.

On admettra que les coefficients diagonaux de D sont définies de façon unique (i.e. si A = U'D'V' est une autre telle décomposition alors D et D' ont les mêmes coefficients diagonaux, à permutation près). Les coefficients diagonaux de D, positifs par définition, sont appelés valeurs singulières de A.

On se donne maintenant M et N dans $M_n(\mathbb{R})$ dont les valeurs singulières (répétées autant de fois que leur multiplicité) sont respectivement notées $\sigma_1 \leqslant \cdots \leqslant \sigma_n$ et $\tau_1 \leqslant \cdots \leqslant \tau_n$. On pose

$$A = \begin{pmatrix} 0 & M \\ M^{\top} & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & N^{\top} \\ N & 0 \end{pmatrix}$$

- **17.** Montrer que les valeurs propres de A sont $-\sigma_n \leqslant \cdots \leqslant -\sigma_1 \leqslant \sigma_1 \leqslant \cdots \leqslant \sigma_n$.
- 18. En déduire que

$$\operatorname{tr}(MN) \leq \sigma_1 \tau_1 + \dots + \sigma_n \tau_n$$

puis que

$$|\operatorname{tr}(MN)| \leq \sigma_1 \tau_1 + \dots + \sigma_n \tau_n.$$

 $\Diamond \Diamond \Diamond$